Scheduling: Solution Methods

  • Merchan A.F.; Lee, H-J.; Maravelias, C.T.  Discrete-Time Mixed-integer Programming Models for Solution Methods for Production Scheduling in Multistage Facilities. Computers & Chemical Engineering, 94, 387-410, 2016.
    (DOI: 10.1016/j.compchemeng.2016.04.034 ).
  • Merchan A.F.; Maravelias, C.T. Preprocessing and Tightening Methods for Time-Indexed Mixed-integer Programming Models for Chemical Production Scheduling. Computers & Chemical Engineering, 84, 516-535, 2016.
    (DOI: 10.1016/j.compchemeng.2015.10.003)
  • Velez, S.; Merchan, A.F.; Maravelias, C.T. On the Solution of Large-Scale Mixed-integer Programming Scheduling Models. Chemical Engineering Science, 136, 139-157, 2015.
    (DOI: 10.1016/j.ces.2015.05.021)
  • Merchan A. F.; Maravelias, C.T. Reformulations of Mixed-integer Programming Continuous-time Models for Chemical Production Scheduling. Industrial & Engineering Chemistry Research, 53(24), 10155-10165, 2014.
    (DOI: 10.1021/ie404274b).
  • Velez, S.; Maravelias, C.T. Advances in Mixed-integer Programming Methods for Chemical Production Scheduling. Annual Review of Chemical and Biomolecular Engineering, 5, 97-121, 2014.
    (DOI: 10.1146/annurev-chembioeng-060713-035859).
  • Merchan, A.G.; Velez, S.; Maravelias, C.T. Tightening Methods for Continuous-time Mixed-Integer Programming Models for Chemical Production Scheduling. AIChE J., 59(12), 4461-4467, 2013.
    (DOI: 10.1002/aic.14249).
  • Velez, S.; Maravelias, C.T. A Branch-and-Bound Algorithm for the Solution of Chemical Production Scheduling MIP Models Using Parallel Computing.  Computers and Chemical Engineering, 55, 28-39, 2013.
    (DOI: 10.1016/j.compchemeng.2013.03.030).
  • Velez, S.; Maravelias, C.T. Reformulations and Branching Methods for Mixed-integer Programming Chemical Production Scheduling Models.  Industrial & Engineering Chemistry Research, 52 (10), 3832-3841, 2013.
    (DOI: 10.1021/ie303421h).
  • Velez, S.; Maravelias, C.T. Mixed-integer Programming Model and Tightening Methods for Scheduling in General Chemical Production Environments. Industrial and Engineering Chemistry Research, 52 (9), 3407-3423, 2013.
    (DOI: 10.1021/ie302741b).
  • Velez, S.; Sundaramoorthy, A; Maravelias, C.T. Valid Inequalities Based on Demand Propagation for Chemical Production Scheduling MIP Models. AIChE J., 59(3), 872-887, 2013.
    (DOI: 10.1002/aic.14021).
  • Sundaramoorthy, A.; Maravelias, C. T. Computational Study of Scheduling Approaches for Batch Process Networks. Industrial and Engineering Chemistry Research, 50(9), 5023-5040, 2011.
    (DOI: 10.1021/ie101419z).
  • Ferris, M.C.; Maravelias, C. T.; Sundaramoorthy, A. Simultaneous Batching and Scheduling Using Dynamic Decomposition on a Grid. INFORMS Journal on Computing, 21 (3), 398-410, 2009.
    (DOI: 10.1287/ijoc.1090.0339).
  • Aggoun, A.; Maravelias, C. T.; Vazacopoulos, A. Mixed Integer Programming/Constrained Programming. Hybrid Methods. In Encyclopedia of Optimization (Editors: Floudas, C.A.; Pardalos, P.M.), 2nd ed., Springer, 2270-2276, 2008.
    (DOI: 10.1007/978-0-387-74759-0)
  • Maravelias, C. T. A Decomposition Framework for the Scheduling of Batch Processes. Computers and Chemical Engineering, 30 (3), 407-420, 2006.
    (DOI: 10.1016/j.compchemeng.2005.09.011).
  • Maravelias, C. T.; Grossmann, I. E. Using MILP and CP for the Scheduling of Batch Chemical Processes. Lecture Notes on Computer Science, 3011, 1-20, 2004.
  • Maravelias, C. T.; Grossmann, I. E. A Hybrid MIP/CP Decomposition Approach for the Short Term Scheduling of Multipurpose Plants.  Computers and Chemical Engineering, 28, 1921-1949, 2004.
    (DOI: 10.1016/j.compchemeng.2004.03.016).
  • Maravelias, C. T.; Grossmann, I. E. Minimization of Makespan with Discrete-Time State Task Network Formulation. Ind. Eng. Chem. Res., 42 (24), 6252-6257, 2003.
    (DOI: 10.1021/ie034053b).