Biofuels

  • Herron J.A.; Vann, T.; Duong, N.; Resasco, D.E; Crossley, S.P.; Lobban, L.L.; Maravelias, C.T. A Systems-level Roadmap for Biomass Thermal Fractionation and Catalytic Upgrading Strategies. Energy Technology, available online.
    (DOI: 10.1002/ente.201600147).
  • Ng, R.T.L.; Maravelias, C.T. Design of Biofuel Supply Chains with Variable Regional Depot and Biorefinery Locations. Renewable Energy, 100, 90-102, 2017.
    (DOI: 10.1016/j.renene.2016.05.009).
  • Wu, W-Z.; Kurniawan, D.; Zhu, W.; Maravelias, C.T. Composite-Curve-Based Biomass Procurement Planning Approach. Advances in Energy Systems Engineering (Editors: Kopanos, G.M.; Liu, P.; Georgiadis, M.C.), 749-770, Springer, 2017.
    (ISBN: 978-3-319-42803-1).
  • Yenkie, K.M.; Wu, W.; Clark, R.L.; Pfleger, B.F.; Root, T.W.; Maravelias, C.T. A Roadmap for the Synthesis of Separation Networks for the Recovery of Bio-based Chemicals: Matching Biological and Process Feasibility, Biotechnology Advances, 34, 1362-1383, 2016.
    (DOI: 10.1016/j.biotechadv.2016.10.003).
  • Motagamwala, Α.Η.; Won, W.; Maravelias, C.T.; Dumesic, J.A. An Engineered Solvent System for Sugar Production from Lignocellulosic Biomass Using Biomass Derived γ-valerolactone. Green Chemistry, 18, 5756-5763, 2016.(DOI: 10.1039/C6GC02297A).
  • Ng, R.T.L.; Maravelias, C.T. Design of Cellulosic Ethanol Supply Chains with Regional Depots. Industrial and Engineering Chemistry Research, 55, 3420-3432, 2016.
    (DOI: 10.1021/acs.iecr.5b03677).
  • Han, J-H.; Sen, S.M.; Luterbacher, J.S.; Martin Alonso, D.; Dumesic, J.A.; Maravelias, C.T. Process Systems Engineering Studies for the Synthesis of Catalytic Biomass-to-Fuels Strategies. Computers and Chemical Engineering, 81, 57-69, 2015.
    (DOI: 10.1016/j.compchemeng.2015.04.007).
  • Han, J-H.; Luterbacher, J.S.; Martin Alonso, D.; Dumesic, J.A.; Maravelias, C.T. A Lignocellulosic Ethanol Strategy via Nonenzynmatic Sugar Production: Process Synthesis and Analysis. Bioresource Technology, 182, 258-266, 2015.
    (DOI: 10.1016/j.biortech.2015.01.135).
  • Bond, J.Q.; Upadhye, A.A.; Olcay, H.; Tompsett, G.A.; Jae J.; Xing R.; Alonso, D.M.; Wang, D.; Zhang, T.; Kumar, R.; Foster, A.; Sen, S.M.; Maravelias, C.T.; Malina, R.; Barrett, S.R.H.; Lobo, R.; Wyman, C.E.; Dumesic, J.A.; Huber, G.W. Production of Renewable Jet Fuel Range Alkanes and Commodity Chemicals from Integrated Catalytic Processing of Biomass. Energy and Environmental Science, 7, 1500-1523, 2014.
    (DOI: 10.1039/C3EE43846E).
  • Luterbacher, J.S.; Rand, J.M.; Martin Alonso, D.; Han, J.; Youngquist, J.T.; Maravelias, C.T.; Pfleger, B.F.; Dumesic, J.A. Nonenzymatic Sugar Production from Biomass Using Biomass-derived γ-Valerolactone. Science, 343, 207, 2014.
    (DOI: 10.1126/science.1246748)
  • Han, J-H.; Sen, S. M.; Alonso, D.; Dumesic, J. A.; Maravelias, C. T. A Strategy for the Simultaneous Catalytic Conversion of Hemicellulose and Cellulose from Lignocellulosic Biomass to Liquid Transportation Fuels. Green Chemistry, 16, 653-661, 2014.
    (DOI: 10.1039/C3GC41511B).
  • Caes, B.R.; Van Oosbree, T.R.; Lu, F.; Ralph, J.; Maravelias, C.T.; Raines, R.T. Simulated Moving Bed Chromatography: Separation and Recovery of Sugars and Ionic Liquid from Biomass Hydrolysates. ChemSusChem, 6(11), 2083-2089, 2013.
    (DOI: 10.1002/cssc.201300267).
  • Kim, J.; Sen, S. M.; Maravelias, C. T. An Optimization-Based Assessment Framework for Biomass-to-Fuels Conversion Strategies. Energy and Environmental Science, 6 (4), 1093-1104, 2013.
    (DOI:10.1039/C3EE24243A).
  • Sen, S. M.; Alonso, D.; Wettstein, S.G.; Gurbuz, E.I.; Henao, C.A.; Dumesic, J. A.; Maravelias, C. T. A Sulfuric Acid Management Strategy for the Production of Liquid Hydrocarbon Fuels via Catalytic Conversion of Biomass-derived Levulinic Acid. Energy and Environmental Science, 5 (12), 9690-9697, 2012.
    (DOI:10.1039/c2ee22526c).
  • Sen, S. M.; Gurbuz, E.I.; Wettstein, S.G.; Alonso, D.; Dumesic, J. A.; Maravelias, C. T. Production of Butene Oligomers as Transportation Fuels using Butene for Esterification of Levulinic Acid from Lignocellulosic Biomass: Process Synthesis and Technoeconomic Evaluation. Green Chemistry, 14 (12), 3289-3294, 2012.
    (DOI:10.1039/c2gc35881f).
  • Sen, S. M.; Binder, J.B.; Raines, R.T.; Maravelias, C. T. Conversion of biomass to sugars via ionic liquid hydrolysis: Process synthesis and economic evaluation. Biofuels, Bioproducts & Biorefining, 6(4), 444-452, 2012.
    (DOI: 10.1002/bbb.1336)
  • Sen, M.; Henao, C.A.; Braden, D.J.; Dumesic, J.A.; Maravelias, C. T. Catalytic Conversion of Lignocellulosic Biomass to Fuels: Process Development and Technoeconomic Evaluation. Chemical Engineering Science, 67, 57-67, 2012.
    (DOI: 10.1016/j.ces.2011.07.022).
  • Braden, D.J.; Henao, C. A.; Heltzel, J.; Maravelias, C.T.; Dumesic, J.A. Production of Liquid Hydrocarbon Fuels by Catalytic Conversion of Biomass-derived Levulinic Acid. Green Chemistry, 13, 1755-1765, 2011.
    (DOI: 10.1039/c1gc15047b).